skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stuard, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry‐compliant conditions for large area manufacturing. The relatively low‐cost polymer PTQ10 is paired with the nonfullerene acceptor 4TIC‐4F. Devices are processed using a nonhalogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well‐known and low‐cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) is improved from 8.4% to 9.9% due to increased fill factor (FF) and open‐circuit voltage (VOC) while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole–electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), atomic force microscopy (AFM), and surface energy analysis. In addition, the industrial figure of merit (i‐FOM) of this ternary blend is found to increase drastically upon addition of PC61BM due to an increased performance–stability–cost balance. 
    more » « less
  2. Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices. 
    more » « less